skip to main content


Search for: All records

Creators/Authors contains: "Ruiz, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Augmented Reality (AR) headsets are being employed in industrial settings (e.g., the oil industry); however, there has been little work on how information should be presented in these headsets, especially in the context of situational awareness. We present a study examining three different presentation styles (Display, Environment, Mixed Environment) for textual secondary information in AR headsets. We found that the Display and Environment presentation styles assisted in perception and comprehension. Our work contributes a first step to understanding how to design visual information in AR headsets to support situational awareness. 
    more » « less
  2. Mode switching allows applications to support a wide range of operations (e.g. selection, manipulation, and navigation) using a limited input space. While the performance of different mode switching techniques has been extensively examined for pen- and touch-based interfaces, investigating mode switching in augmented reality (AR) is still relatively new. Prior work found that using non-preferred hand is an efficient mode switching technique in AR. However, it is unclear how the technique performs when increasing the number of modes, which is more indicative of real-world applications. Therefore, we examined the scalability of non-preferred hand mode switching in AR with two, four, six, and eight modes. We found that as the number of modes increase, performance plateaus after the four-mode condition. We also found that counting gestures have varying effects on mode switching performance in AR. Our findings suggest that modeling mode switching performance in AR is more complex than simply counting the number of available modes. Our work lays a foundation for understanding the costs associated with scaling interaction techniques in AR. 
    more » « less
  3. Abstract

    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$R<1.072with 90 % confidence level.

     
    more » « less
  4. Fitts’ law has accurately modeled both children’s and adults’ pointing movements, but it is not as precise for modeling movement to small targets. To address this issue, prior work presented FFitts’ law, which is more exact than Fitts’ law for modeling adults’ finger input on touchscreens. Since children’s touch interactions are more variable than adults, it is unclear if FFitts’ law should be applied to children. We conducted a 2D target acquisition task with 54 children (ages 5-10) to examine if FFitts’ law can accurately model children’s touchscreen movement time. We found that Fitts’ law using nominal target widths is more accurate, with a R2 value of 0.93, than FFitts’ law for modeling children’s finger input on touchscreens. Our work contributes new understanding of how to accurately predict children’s finger touch performance on touchscreens. 
    more » « less
  5. Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. null (Ed.)
  8. Abstract

    Aria is a plant hosting a$${350}\,\hbox {m}$$350mcryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of$${^{39}\hbox {Ar}}$$39Arin argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed,$${^{39}\hbox {Ar}}$$39Aris a$$\beta $$β-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant.

     
    more » « less
  9. null (Ed.)
    Abstract Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science. 
    more » « less